Knowledge Management System Of Institute Of Botany,CAS
The Influence of Vegetation Characteristics on Individual Tree Segmentation Methods with Airborne LiDAR Data | |
Yang, Qiuli1; Su, Yanjun1; Jin, Shichao1; Kelly, Maggi2,3; Hu, Tianyu1; Ma, Qin4; Li, Yumei1; Song, Shilin1; Zhang, Jing1; Xu, Guangcai1; Wei, Jianxin5,6,7; Guo, Qinghua1![]() | |
2019 | |
发表期刊 | REMOTE SENSING
![]() |
卷号 | 11期号:23 |
摘要 | This study investigated the effects of forest type, leaf area index (LAI), canopy cover (CC), tree density (TD), and the coefficient of variation of tree height (CVTH) on the accuracy of different individual tree segmentation methods (i.e., canopy height model, pit-free canopy height model (PFCHM), point cloud, and layer stacking seed point) with LiDAR data. A total of 120 sites in the Sierra Nevada Forest (California) and Shavers Creek Watershed (Pennsylvania) of the United States, covering various vegetation types and characteristics, were used to analyze the performance of the four selected individual tree segmentation algorithms. The results showed that the PFCHM performed best in all forest types, especially in conifer forests. The main forest characteristics influencing segmentation methods were LAI and CC, LAI and TD, and CVTH in conifer, broadleaf, and mixed forests, respectively. Most of the vegetation characteristics (i.e., LAI, CC, and TD) negatively correlated with all segmentation methods, while the effect of CVTH varied with forest type. These results can help guide the selection of individual tree segmentation method given the influence of vegetation characteristics. |
关键词 | individual segmentation method leaf area index canopy cover tree density coefficient of variation of tree height |
学科领域 | Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology |
DOI | 10.3390/rs11232880 |
收录类别 | SCI |
语种 | 英语 |
WOS关键词 | LASER SCANNER DATA ; FOREST CANOPY ; DELINEATION ALGORITHM ; FILTERING ALGORITHMS ; HEIGHT MODELS ; F-SCORE ; AREA ; IMAGERY ; CROWNS ; VARIABLES |
WOS研究方向 | Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS记录号 | WOS:000508382100161 |
出版者 | MDPI |
文献子类 | Article |
出版地 | BASEL |
EISSN | 2072-4292 |
资助机构 | Key Deployment Project of the Chinese Academy of Sciences [KFZD-SW-319-06] ; National Key R&D Program of China [2017YFC0503905] ; CAS Pioneer Hundred Talents Program ; Provincial Key Technology Research and Development Program of Sichuan Ministry of Natural Resources for Ecological Geohazard Prevention and Mitigation in the 8.8 Jiuzhaigou Earthquake Area [KJ-2018-21] ; Provincial Key R&D Program of the Sichuan Ministry of Science and Technology [2019YFS0074] |
作者邮箱 | yangqiuli621@ibcas.ac.cn ; ysu@ibcas.ac.cn ; jinshichao@ibcas.ac.cn ; maggi@berkeley.edu ; tianyuhu@ibcas.ac.cn ; qm153@msstate.edu ; liyumei@ibcas.ac.cn ; songsl@ibcas.ac.cn ; zhangjingl8b@mails.ucas.ac.cn ; xuguangcai@ibcas.ac.cn ; wjxlr@126.com ; qguo@ibcas.ac.cn |
作品OA属性 | gold |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.ibcas.ac.cn/handle/2S10CLM1/19847 |
专题 | 植被与环境变化国家重点实验室 |
作者单位 | 1.Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing 100093, Peoples R China 2.Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China 3.Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA 4.Univ Calif Berkeley, Div Agr & Nat Resources, Berkeley, CA 94720 USA 5.Mississippi State Univ, Dept Forestry, Mississippi State, MS 39762 USA 6.Xinjiang Univ, Coll Resources & Environm Sci, Urumqi 830002, Peoples R China 7.Xinjiang Lidar Appl Engn Technol Res Ctr, Urumqi 830002, Peoples R China 8.Xinjiang Land & Resources Informat Ctr, Urumqi 830002, Peoples R China |
推荐引用方式 GB/T 7714 | Yang, Qiuli,Su, Yanjun,Jin, Shichao,et al. The Influence of Vegetation Characteristics on Individual Tree Segmentation Methods with Airborne LiDAR Data[J]. REMOTE SENSING,2019,11(23). |
APA | Yang, Qiuli.,Su, Yanjun.,Jin, Shichao.,Kelly, Maggi.,Hu, Tianyu.,...&Guo, Qinghua.(2019).The Influence of Vegetation Characteristics on Individual Tree Segmentation Methods with Airborne LiDAR Data.REMOTE SENSING,11(23). |
MLA | Yang, Qiuli,et al."The Influence of Vegetation Characteristics on Individual Tree Segmentation Methods with Airborne LiDAR Data".REMOTE SENSING 11.23(2019). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Yang-2019-The Influe(6208KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论