Knowledge Management System Of Institute Of Botany,CAS
Transcriptomic Analysis of the Grapevine LEA Gene Family in Response to Osmotic and Cold Stress Reveals a Key Role for VamDHN3 | |
Xu, Meilong1,2; Tong, Qian1; Wang, Yi1; Wang, Zemin1; Xu, Guangzhao1; Elias, Gathunga Kirabi1; Li, Shaohua1![]() | |
2020 | |
Source Publication | PLANT AND CELL PHYSIOLOGY
![]() |
ISSN | 0032-0781 |
Volume | 61Issue:4Pages:775-786 |
Abstract | Late embryogenesis abundant (LEA) proteins comprise a large family that plays important roles in the regulation of abiotic stress, however, no in-depth analysis of LEA genes has been performed in grapevine to date. In this study, we analyzed a total of 52 putative LEA genes in grapevine at the genomic and transcriptomic level, compiled expression profiles of four selected (V. amurensis) VamLEA genes under cold and osmotic stresses, and studied the potential function of the V. amurensis DEHYDRIN3 (VamDHN3) gene in grapevine callus. The 52 LEA proteins were classified into seven phylogenetic groups. RNA-seq and quantitative real-time PCR results demonstrated that a total of 16 and 23 VamLEA genes were upregulated under cold and osmotic stresses, respectively. In addition, overexpression of VamDHN3 enhanced the stability of the cell membrane in grapevine callus, suggesting that VamDHN3 is involved in osmotic regulation. These results provide fundamental knowledge for the further analysis of the biological roles of grapevine LEA genes in adaption to abiotic stress. |
Keyword | Cold and osmotic stresses Grapevine LEA genes Overexpression of VamDHN3 gene Phylogenetic analysis Transcriptomic analysis |
Subject Area | Plant Sciences ; Cell Biology |
DOI | 10.1093/pcp/pcaa004 |
Indexed By | SCI |
Language | 英语 |
WOS Keyword | LATE-EMBRYOGENESIS-ABUNDANT ; HABROCHAITES ENHANCES TOLERANCE ; GENOME-WIDE IDENTIFICATION ; DEHYDRIN GENE ; EXPRESSION ANALYSIS ; ESCHERICHIA-COLI ; OXIDATIVE STRESS ; ABIOTIC STRESSES ; PROTEINS ; OVEREXPRESSION |
WOS Research Area | Plant Sciences ; Cell Biology |
WOS ID | WOS:000553476300011 |
Publisher | OXFORD UNIV PRESS |
Subtype | Article |
Publication Place | OXFORD |
EISSN | 1471-9053 |
Funding Organization | Grape breeding project of Ningxia, China [NXNYYZ201502] ; major science and technology program of Ningxia Hui Autonomous region, China [2016BZ06] |
Corresponding Author Email | shhli@ibcas.ac.cn ; zl249@ibcas.ac.cn |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.ibcas.ac.cn/handle/2S10CLM1/21653 |
Collection | 中科院北方资源植物重点实验室 |
Affiliation | 1.Chinese Acad Sci, Innovat Acad Seed Design, Inst Bot, Beijing Key Lab Grape Sci & Enol,CAS Key Lab Plan, Beijing 100093, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 3.State Key Lab Seedling Bioengn, Yinchuan 750004, Ningxia, Peoples R China 4.Chinese Acad Sci, Sino Africa Joint Res Ctr, Wuhan 430074, Peoples R China |
Recommended Citation GB/T 7714 | Xu, Meilong,Tong, Qian,Wang, Yi,et al. Transcriptomic Analysis of the Grapevine LEA Gene Family in Response to Osmotic and Cold Stress Reveals a Key Role for VamDHN3[J]. PLANT AND CELL PHYSIOLOGY,2020,61(4):775-786. |
APA | Xu, Meilong.,Tong, Qian.,Wang, Yi.,Wang, Zemin.,Xu, Guangzhao.,...&Liang, Zhenchang.(2020).Transcriptomic Analysis of the Grapevine LEA Gene Family in Response to Osmotic and Cold Stress Reveals a Key Role for VamDHN3.PLANT AND CELL PHYSIOLOGY,61(4),775-786. |
MLA | Xu, Meilong,et al."Transcriptomic Analysis of the Grapevine LEA Gene Family in Response to Osmotic and Cold Stress Reveals a Key Role for VamDHN3".PLANT AND CELL PHYSIOLOGY 61.4(2020):775-786. |
Files in This Item: | ||||||
File Name/Size | DocType | Version | Access | License | ||
Xu-2020-Transcriptom(1169KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | View Application Full Text |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment