IB-CAS  > 植被与环境变化国家重点实验室
Large-Scale Geographical Variations and Climatic Controls on Crown Architecture Traits
Su, Yanjun1; Hu, Tianyu1; Wang, Yongcai2; Li, Yumei1; Dai, Jingyu3; Liu, Hongyan3; Jin, Shichao1; Ma, Qin4; Wu, Jin5; Liu, Lingli1; Fang, Jingyun3; Guo, Qinghua1
2020
发表期刊JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES
ISSN2169-8953
卷号125期号:2
摘要Crown architecture is a critical component for a tree to interact with the ambient environment and to compete with neighbors. However, little is known regarding how climate variability may shape crown architecture traits across large geographical extents and whether crown architecture traits have coordinated variations with trunk and leaf traits to climate gradients. Here we used Quercus mongolica trees as an example, used the cutting-edge terrestrial laser scanning technique to accurately characterize their crown architecture traits, and explored their variabilities along with environmental variability across large climate gradients in northern China. Our results showed that there are significant spatial variations in trunk, crown, and leaf traits even for the same genetic group across large environmental gradients. Tree height and leaf size had tight covariations with precipitation (|R|> 0.8, p < 0.01). We also observed coordinated variations among crown architecture traits related to canopy shape (e.g., primary branch insertion angle, chord length ratio), trunk traits (e.g., tree height), leaf traits (e.g., specific leaf area), and climate variability, highlighting there are likely fundamental evolutionary strategies regulating these covariations. With a projected drier and hotter climate scenario in this region, our results further suggest trees are expected to transit from a tree shape to a shrub shape, with large ecological and ecophysiological impacts on this region. Plain Language Summary Trees under different environmental conditions can show vast diversity in crown architectures. Understanding patterns and proximate causes of such diversity is a central question in plant ecology, with important implications for predicting future vegetation dynamics with climate change. Here, we combined the cutting-edge terrestrial laser scanning technology and field measurements to investigate the role of crown architecture in the evolutionary strategy development of Quercus mongolica trees in northern China with large climate gradients. Our findings provide new insights on the hypothesis of how crown architecture traits coordinated with trunk and leaf traits to balance the light and water demands of a tree and highlight the significance of long-neglected crown architecture in tree evolutionary strategy, with important implications in future vegetation dynamic prediction studies. Key Points >Significant spatial variations in crown architecture traits are observed across large climate gradients Trunk and leaf traits are correlated with precipitation, while crown architecture is correlated with both temperature and precipitation Crown shape related architecture traits coordinate with trunk and leaf traits tightly to adapt to changes in environmental conditions
关键词crown architecture terrestrial laser scanning climate variations coordination
学科领域Environmental Sciences ; Geosciences, Multidisciplinary
DOI10.1029/2019JG005306
收录类别SCI
语种英语
WOS关键词GENERAL QUANTITATIVE THEORY ; LIGHT CAPTURE EFFICIENCY ; TERRESTRIAL LIDAR ; TROPICAL TREES ; RAIN-FOREST ; QUERCUS-MONGOLICA ; INDIVIDUAL TREES ; TRADE-OFFS ; PATTERNS ; HEIGHT
WOS研究方向Environmental Sciences & Ecology ; Geology
WOS记录号WOS:000534472900040
出版者AMER GEOPHYSICAL UNION
文献子类Article
出版地WASHINGTON
EISSN2169-8961
资助机构Frontier Science Key Programs of the Chinese Academy of Sciences [QYZDY-SSW-SMC011] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [41871332, 31971575, 41790422, 41530747] ; CAS Pioneer Hundred Talents Program
作者邮箱qguo@ibcas.ac.cn
引用统计
被引频次:14[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ibcas.ac.cn/handle/2S10CLM1/21755
专题植被与环境变化国家重点实验室
作者单位1.Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
3.Minist Environm Protect, Satellite Environm Applicat Ctr, Beijing, Peoples R China
4.Peking Univ, Coll Urban & Environm Sci, Beijing, Peoples R China
5.Mississippi State Univ, Dept Forestry, Mississippi State, MS 39762 USA
6.Univ Hong Kong, Sch Biol Sci, Pokfulam, Hong Kong, Peoples R China
推荐引用方式
GB/T 7714
Su, Yanjun,Hu, Tianyu,Wang, Yongcai,et al. Large-Scale Geographical Variations and Climatic Controls on Crown Architecture Traits[J]. JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES,2020,125(2).
APA Su, Yanjun.,Hu, Tianyu.,Wang, Yongcai.,Li, Yumei.,Dai, Jingyu.,...&Guo, Qinghua.(2020).Large-Scale Geographical Variations and Climatic Controls on Crown Architecture Traits.JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES,125(2).
MLA Su, Yanjun,et al."Large-Scale Geographical Variations and Climatic Controls on Crown Architecture Traits".JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES 125.2(2020).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Su-2020-Large-Scale (35082KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Su, Yanjun]的文章
[Hu, Tianyu]的文章
[Wang, Yongcai]的文章
百度学术
百度学术中相似的文章
[Su, Yanjun]的文章
[Hu, Tianyu]的文章
[Wang, Yongcai]的文章
必应学术
必应学术中相似的文章
[Su, Yanjun]的文章
[Hu, Tianyu]的文章
[Wang, Yongcai]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Su-2020-Large-Scale Geographical Variations an.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。