Knowledge Management System Of Institute Of Botany,CAS
Crystal structure of Bacillus fastidious uricase reveals an unexpected folding of the C-terminus residues crucial for thermostability under physiological conditions | |
Feng, Juan1; Wang, Lu; Liu, Hongbo; Yang, Xiaolan; Liu, Lin1; Xie, Yanling; Liu, Miaomiao; Zhao, Yunsheng; Li, Xiang; Wang, Deqiang; Zhan, Chang-Guo; Liao, Fei | |
2015 | |
Source Publication | APPLIED MICROBIOLOGY AND BIOTECHNOLOGY |
ISSN | 0175-7598 |
Volume | 99Issue:19Pages:7973-7986 |
Abstract | Bacillus fastidious uricase (BF uricase) containing 322 amino acid residues exhibited high stability under physiological conditions. Its crystal structure was solved to 1.4- resolution, showing homotetramer containing two homodimers. After the intersubunit antiparallel beta-sheet in its homodimer, each subunit had a total of 18 C-terminus residues forming an alpha-helix (Q305-A313) and random coil (S314-L322) on surface to bury other two alpha-helices (I227-T238 and I244-R258). In comparison, reported crystal structures of Arthrobacter globiformis and Aspergillus flavus uricases had atomic coordinates of only some C-terminus residues, while the crystal structures of all the other uricases accessible before September 2014 missed atomic coordinates of all their C-terminus residues, after the intersubunit antiparallel beta-sheets. In each homodimer of BF uricase, H-bonds were found between E311 and Y249 and between Y319 and D257; electrostatic interaction networks were found to surround D307 plus R310 and intersubunit R3, K312 plus D257, E318 plus K242, and L322 plus R258. Amino acid mutations that disrupted those interactions when R3 and D307 were reserved caused moderate decreases of activity at pH 9.2 while negligible decreases of activity at pH 7.4, but destroyed stability at pH 7.4 while slightly decreased stability at pH 9.2. Such structural information guided the fusion of 6His-tag to the C-terminus of the mutant L322D with SNSNSN as a linker to reserve the activity and stability. Hence, the folding of the C-terminus residues is crucial for thermal stability of BF uricase under physiological conditions; these new structural insights are valuable for molecular engineering of uricases. |
Keyword | Bacillus fastidious uricase C-terminus residues Thermal stability Electrostatic interaction center Hydrophobic interaction |
Subject Area | Biotechnology & Applied Microbiology |
DOI | 10.1007/s00253-015-6520-6 |
Indexed By | SCI |
Language | 英语 |
WOS Keyword | URATE OXIDASE ; ASPERGILLUS-FLAVUS ; ARTHROBACTER-GLOBIFORMIS ; POLY(ETHYLENE GLYCOL) ; RESOLUTION STRUCTURES ; STRUCTURE VALIDATION ; DIRECTED EVOLUTION ; MOLPROBITY ; EXPRESSION ; STABILITY |
WOS Research Area | Science Citation Index Expanded (SCI-EXPANDED) |
WOS ID | WOS:000360839800015 |
Publisher | SPRINGER |
Subtype | Article |
Publication Place | NEW YORK |
EISSN | 1432-0614 |
Funding Organization | National Natural Science Foundation of China [30672139] ; Natural Sciences Foundation of CQ [CSTC2011BA5039, CSTC2012JJA0057] ; Education Ministry of China [20125503110007] ; National Science Foundation of USA [CHE-1111761] |
Corresponding Author Email | liaofeish@yeah.net |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.ibcas.ac.cn/handle/2S10CLM1/25893 |
Collection | 中科院光生物学重点实验室 |
Affiliation | 1.Chongqing Med Univ, Educ Minist, Coll Lab Med, Key Lab Med Lab Diagnost, Chongqing 400016, Peoples R China 2.Chinese Acad Sci, Photosynth Res Ctr, Inst Bot, Key Lab Photobiol, Beijing 100093, Peoples R China 3.Univ Kentucky, Coll Pharm, Mol Modeling & Biopharmaceut Ctr, Lexington, KY 40536 USA 4.Univ Kentucky, Coll Pharm, Dept Pharmaceut Sci, Lexington, KY 40536 USA |
Recommended Citation GB/T 7714 | Feng, Juan,Wang, Lu,Liu, Hongbo,et al. Crystal structure of Bacillus fastidious uricase reveals an unexpected folding of the C-terminus residues crucial for thermostability under physiological conditions[J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY,2015,99(19):7973-7986. |
APA | Feng, Juan.,Wang, Lu.,Liu, Hongbo.,Yang, Xiaolan.,Liu, Lin.,...&Liao, Fei.(2015).Crystal structure of Bacillus fastidious uricase reveals an unexpected folding of the C-terminus residues crucial for thermostability under physiological conditions.APPLIED MICROBIOLOGY AND BIOTECHNOLOGY,99(19),7973-7986. |
MLA | Feng, Juan,et al."Crystal structure of Bacillus fastidious uricase reveals an unexpected folding of the C-terminus residues crucial for thermostability under physiological conditions".APPLIED MICROBIOLOGY AND BIOTECHNOLOGY 99.19(2015):7973-7986. |
Files in This Item: | ||||||
File Name/Size | DocType | Version | Access | License | ||
Feng-2015-Crystal st(1727KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | View Application Full Text |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment