IB-CAS

Browse/Search Results:  1-10 of 49 Help

Selected(0)Clear Items/Page:    Sort:
Simulating highly disturbed vegetation distribution: the case of China's Jing-Jin-Ji region 期刊论文
PEERJ, 2020, 卷号: 8
Authors:  Yi, Sangui;  Zhou, Jihua;  Lai, Liming;  Du, Hui;  Sun, Qinglin;  Yang, Liu;  Liu, Xin;  Liu, Benben;  Zheng, Yuanrun
Adobe PDF(1988Kb)  |  Favorite  |  View/Download:10/0  |  Submit date:2022/03/01
Vegetation distribution model  Vegetation classification unit  Important predictor variable  Jing-Jin-Ji region  
An Impartial Semi-Supervised Learning Strategy for Imbalanced Classification on VHR Images 期刊论文
SENSORS, 2020, 卷号: 20, 期号: 22
Authors:  Sun, Fei;  Fang, Fang;  Wang, Run;  Wan, Bo;  Guo, Qinghua;  Li, Hong;  Wu, Xincai
Adobe PDF(5707Kb)  |  Favorite  |  View/Download:7/0  |  Submit date:2022/03/01
image classification  class imbalance  impartial semi-supervised learning strategy (ISS)  extreme gradient boosting (XGB)  very-high-resolution (VHR)  
Application of deep learning in ecological resource research: Theories, methods, and challenges 期刊论文
SCIENCE CHINA-EARTH SCIENCES, 2020, 卷号: 63, 期号: 10, 页码: 1457-1474
Authors:  Guo, Qinghua;  Jin, Shichao;  Li, Min;  Yang, Qiuli;  Xu, Kexin;  Ju, Yuanzhen;  Zhang, Jing;  Xuan, Jing;  Liu, Jin;  Su, Yanjun;  Xu, Qiang;  Liu, Yu
Adobe PDF(4690Kb)  |  Favorite  |  View/Download:6/0  |  Submit date:2022/03/01
Ecological resources  Deep learning  Neural network  Big data  Theory and tools  Application and challenge  
A Framework for Land Use Scenes Classification Based on Landscape Photos 期刊论文
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 卷号: 13, 页码: 6124-6141
Authors:  Xu, Shiwu;  Zhang, Shihui;  Zeng, Jue;  Li, Tingyu;  Guo, Qinghua;  Jin, Shichao
Adobe PDF(6559Kb)  |  Favorite  |  View/Download:5/0  |  Submit date:2022/03/01
Semantics  Remote sensing  Image analysis  Image segmentation  Object recognition  Machine learning  Forestry  Deep convolutional neural networks (DCNNs)  landscape photos  land survey  land use scene classification  
ADMorph: A 3D Digital Microfossil Morphology Dataset for Deep Learning 期刊论文
IEEE ACCESS, 2020, 卷号: 8, 页码: 148744-148756
Authors:  Hou, Yemao;  Cui, Xindong;  Canul-Ku, Mario;  Jin, Shichao;  Hasimoto-Beltran, Rogelio;  Guo, Qinghua;  Zhu, Min
Adobe PDF(1648Kb)  |  Favorite  |  View/Download:6/0  |  Submit date:2022/03/01
Three-dimensional displays  Solid modeling  Computational modeling  Machine learning  Two dimensional displays  Biological system modeling  Shape  Archives of digital morphology  data preprocessing  feature extraction  3D microfossil model classification  deep learning  
Estimating Ecosystem Respiration in the Grasslands of Northern China Using Machine Learning: Model Evaluation and Comparison 期刊论文
SUSTAINABILITY, 2020, 卷号: 12, 期号: 5
Authors:  Zhu, Xiaobo;  He, Honglin;  Ma, Mingguo;  Ren, Xiaoli;  Zhang, Li;  Zhang, Fawei;  Li, Yingnian;  Shi, Peili;  Chen, Shiping;  Wang, Yanfen;  Xin, Xiaoping;  Ma, Yaoming;  Zhang, Yu;  Du, Mingyuan;  Ge, Rong;  Zeng, Na;  Li, Pan;  Niu, Zhongen;  Zhang, Liyun;  Lv, Yan;  Song, Zengjing;  Gu, Qing
Adobe PDF(1290Kb)  |  Favorite  |  View/Download:5/0  |  Submit date:2022/03/01
ecosystem respiration  machine learning  deep learning  grasslands  northern China  
Mapping the Global Mangrove Forest Aboveground Biomass Using Multisource Remote Sensing Data 期刊论文
REMOTE SENSING, 2020, 卷号: 12, 期号: 10
Authors:  Hu, Tianyu;  Zhang, YingYing;  Su, Yanjun;  Zheng, Yi;  Lin, Guanghui;  Guo, Qinghua
Adobe PDF(3278Kb)  |  Favorite  |  View/Download:5/0  |  Submit date:2022/03/01
mangrove  LiDAR  random forest  GLAS  aboveground biomass  
Non-destructive estimation of field maize biomass using terrestrial lidar: an evaluation from plot level to individual leaf level 期刊论文
PLANT METHODS, 2020, 卷号: 16, 期号: 1
Authors:  Jin, Shichao;  Su, Yanjun;  Song, Shilin;  Xu, Kexin;  Hu, Tianyu;  Yang, Qiuli;  Wu, Fangfang;  Xu, Guangcai;  Ma, Qin;  Guan, Hongcan;  Pang, Shuxin;  Li, Yumei;  Guo, Qinghua
Adobe PDF(4774Kb)  |  Favorite  |  View/Download:6/0  |  Submit date:2022/03/01
Biomass  Phenotype  Machine learning  Terrestrial lidar  Precision agriculture  
Estimation of degraded grassland aboveground biomass using machine learning methods from terrestrial laser scanning data 期刊论文
ECOLOGICAL INDICATORS, 2020, 卷号: 108
Authors:  Xu, Kexin;  Su, Yanjun;  Liu, Jin;  Hu, Tianyu;  Jin, Shichao;  Ma, Qin;  Zhai, Qiuping;  Wang, Rui;  Zhang, Jing;  Li, Yumei;  Liu, Hon An;  Guo, Qinghua
Adobe PDF(4794Kb)  |  Favorite  |  View/Download:14/0  |  Submit date:2022/03/01
Aboveground biomass (AGB)  Degraded grassland  Machine learning  Northern agro-pastoral ecotone  Terrestrial laser scanning (TLS)  
Global soil-climate-biome diagram: linking surface soil properties to climate and biota 期刊论文
BIOGEOSCIENCES, 2019, 卷号: 16, 期号: 14, 页码: 2857-2871
Authors:  Zhao, Xia;  Yang, Yuanhe;  Shen, Haihua;  Geng, Xiaoqing;  Fang, Jingyun
Adobe PDF(7260Kb)  |  Favorite  |  View/Download:9/0  |  Submit date:2022/01/06