IB-CAS

Browse/Search Results:  1-7 of 7 Help

Selected(0)Clear Items/Page:    Sort:
Separating the Structural Components of Maize for Field Phenotyping Using Terrestrial LiDAR Data and Deep Convolutional Neural Networks 期刊论文
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 卷号: 58, 期号: 4, 页码: 2644-2658
Authors:  Jin, Shichao;  Su, Yanjun;  Gao, Shang;  Wu, Fangfang;  Ma, Qin;  Xu, Kexin;  Hu, Tianyu;  Liu, Jin;  Pang, Shuxin;  Guan, Hongcan;  Zhang, Jing;  Guo, Qinghua
Adobe PDF(14928Kb)  |  Favorite  |  View/Download:12/0  |  Submit date:2022/03/01
Classification  deep learning  LiDAR  phenotype  segmentation  structural components  
Systematic Identification of the Light-quality Responding Anthocyanin Synthesis-related Transcripts in Petunia Petals 期刊论文
HORTICULTURAL PLANT JOURNAL, 2020, 卷号: 6, 期号: 6, 页码: 428-438
Authors:  Fu, Zhenzhu;  Shang, Hongquan;  Jiang, Hui;  Gao, Jie;  Dong, Xiaoyu;  Wang, Huijuan;  Li, Yanmin;  Wang, Limin;  Zhang, Jing;  Shu, Qingyan;  Chao, Yacong;  Xu, Menglan;  Wang, Rui;  Wang, Liangsheng;  Zhang, Hechen
Adobe PDF(3671Kb)  |  Favorite  |  View/Download:10/0  |  Submit date:2022/03/01
Petunia  Anthocyanin  Transcription factor  Light quality  Transcriptome analysis  
Leaf to panicle ratio (LPR): a new physiological trait indicative of source and sink relation in japonica rice based on deep learning 期刊论文
PLANT METHODS, 2020, 卷号: 16, 期号: 1
Authors:  Yang, Zongfeng;  Gao, Shang;  Xiao, Feng;  Li, Ganghua;  Ding, Yangfeng;  Guo, Qinghua;  Paul, Matthew J.;  Liu, Zhenghui
Adobe PDF(4429Kb)  |  Favorite  |  View/Download:9/0  |  Submit date:2022/03/01
Plant phenotyping  Leaf and panicle detection  Deep learning  Physiological trait  Leaf to panicle ratio (LPR)  Japonica rice  
Stem-Leaf Segmentation and Phenotypic Trait Extraction of Individual Maize Using Terrestrial LiDAR Data 期刊论文
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 卷号: 57, 期号: 3, 页码: 1336-1346
Authors:  Jin, Shichao;  Su, Yanjun;  Wu, Fangfang;  Pang, Shuxin;  Gao, Shang;  Hu, Tianyu;  Liu, Jin;  Guo, Qinghua
Adobe PDF(7737Kb)  |  Favorite  |  View/Download:15/0  |  Submit date:2022/01/06
Light detection and ranging (LiDAR)  phenotypic traits  regional growth  segmentation  skeleton  
A global corrected SRTM DEM product for vegetated areas 期刊论文
REMOTE SENSING LETTERS, 2018, 卷号: 9, 期号: 4, 页码: 393-402
Authors:  Zhao, Xiaoqian;  Su, Yanjun;  Hu, Tianyu;  Chen, Linhai;  Gao, Shang;  Wang, Rui;  Jin, Shichao;  Guo, Qinghua
Adobe PDF(2084Kb)  |  Favorite  |  View/Download:9/0  |  Submit date:2022/02/25
Deep Learning: Individual Maize Segmentation From Terrestrial Lidar Data Using Faster R-CNN and Regional Growth Algorithms 期刊论文
FRONTIERS IN PLANT SCIENCE, 2018, 卷号: 9
Authors:  Jin, Shichao;  Su, Yanjun;  Gao, Shang;  Wu, Fangfang;  Hu, Tianyu;  Liu, Jin;  Li, Wankai;  Wang, Dingchang;  Chen, Shaojiang;  Jiang, Yuanxi;  Pang, Shuxin;  Guo, Qinghua
Adobe PDF(2278Kb)  |  Favorite  |  View/Download:8/0  |  Submit date:2022/02/25
deep learning  detection  classification  segmentation  phenotype  Lidar (light detection and ranging)  
The Transferability of Random Forest in Canopy Height Estimation from Multi-Source Remote Sensing Data 期刊论文
REMOTE SENSING, 2018, 卷号: 10, 期号: 8
Authors:  Jin, Shichao;  Su, Yanjun;  Gao, Shang;  Hu, Tianyu;  Liu, Jin;  Guo, Qinghua
Adobe PDF(4477Kb)  |  Favorite  |  View/Download:10/0  |  Submit date:2022/02/25
canopy height  Random Forest  LiDAR  multi-source  vegetation type  location  scale