IB-CAS

Browse/Search Results:  1-10 of 11 Help

Selected(0)Clear Items/Page:    Sort:
Separating the Structural Components of Maize for Field Phenotyping Using Terrestrial LiDAR Data and Deep Convolutional Neural Networks 期刊论文
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 卷号: 58, 期号: 4, 页码: 2644-2658
Authors:  Jin, Shichao;  Su, Yanjun;  Gao, Shang;  Wu, Fangfang;  Ma, Qin;  Xu, Kexin;  Hu, Tianyu;  Liu, Jin;  Pang, Shuxin;  Guan, Hongcan;  Zhang, Jing;  Guo, Qinghua
Adobe PDF(14928Kb)  |  Favorite  |  View/Download:2/0  |  Submit date:2022/01/06
Classification  deep learning  LiDAR  phenotype  segmentation  structural components  
An updated Vegetation Map of China (1:1000000) 期刊论文
SCIENCE BULLETIN, 2020, 卷号: 65, 期号: 13, 页码: 1125-1136
Authors:  Su, Yanjun;  Guo, Qinghua;  Hu, Tianyu;  Guan, Hongcan;  Jin, Shichao;  An, Shazhou;  Chen, Xuelin;  Guo, Ke;  Hao, Zhanqing;  Hu, Yuanman;  Huang, Yongmei;  Jiang, Mingxi;  Li, Jiaxiang;  Li, Zhenji;  Li, Xiankun;  Li, Xiaowei;  Liang, Cunzhu;  Liu, Renlin;  Liu, Qing;  Ni, Hongwei;  Peng, Shaolin;  Shen, Zehao;  Tang, Zhiyao;  Tian, Xingjun;  Wang, Xihua;  Wang, Renqing;  Xie, Zongqiang;  Xie, Yingzhong;  Xu, Xiaoniu;  Yang, Xiaobo;  Yang, Yongchuan;  Yu, Lifei;  Yue, Ming;  Zhang, Feng;  Ma, Keping
Adobe PDF(6509Kb)  |  Favorite  |  View/Download:6/0  |  Submit date:2022/01/06
ADMorph: A 3D Digital Microfossil Morphology Dataset for Deep Learning 期刊论文
IEEE ACCESS, 2020, 卷号: 8, 页码: 148744-148756
Authors:  Hou, Yemao;  Cui, Xindong;  Canul-Ku, Mario;  Jin, Shichao;  Hasimoto-Beltran, Rogelio;  Guo, Qinghua;  Zhu, Min
Adobe PDF(1648Kb)  |  Favorite  |  View/Download:0/0  |  Submit date:2022/01/06
Three-dimensional displays  Solid modeling  Computational modeling  Machine learning  Two dimensional displays  Biological system modeling  Shape  Archives of digital morphology  data preprocessing  feature extraction  3D microfossil model classification  deep learning  
Non-destructive estimation of field maize biomass using terrestrial lidar: an evaluation from plot level to individual leaf level 期刊论文
PLANT METHODS, 2020, 卷号: 16, 期号: 1
Authors:  Jin, Shichao;  Su, Yanjun;  Song, Shilin;  Xu, Kexin;  Hu, Tianyu;  Yang, Qiuli;  Wu, Fangfang;  Xu, Guangcai;  Ma, Qin;  Guan, Hongcan;  Pang, Shuxin;  Li, Yumei;  Guo, Qinghua
Adobe PDF(4774Kb)  |  Favorite  |  View/Download:0/0  |  Submit date:2022/01/06
Biomass  Phenotype  Machine learning  Terrestrial lidar  Precision agriculture  
A Point-Based Fully Convolutional Neural Network for Airborne LiDAR Ground Point Filtering in Forested Environments 期刊论文
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 卷号: 13, 页码: 3958-3974
Authors:  Jin, Shichao;  Sun, Yanjun;  Zhao, Xiaoqian;  Hu, Tianyu;  Guo, Qinghua
Adobe PDF(7633Kb)  |  Favorite  |  View/Download:1/0  |  Submit date:2022/01/06
Digital terrain model (DTM)  deep learning  fully convolutional neural network (FCN)  ground filtering  light detection and ranging (LiDAR)  
Estimation of degraded grassland aboveground biomass using machine learning methods from terrestrial laser scanning data 期刊论文
ECOLOGICAL INDICATORS, 2020, 卷号: 108
Authors:  Xu, Kexin;  Su, Yanjun;  Liu, Jin;  Hu, Tianyu;  Jin, Shichao;  Ma, Qin;  Zhai, Qiuping;  Wang, Rui;  Zhang, Jing;  Li, Yumei;  Liu, Hon An;  Guo, Qinghua
Adobe PDF(4794Kb)  |  Favorite  |  View/Download:1/0  |  Submit date:2022/01/06
Aboveground biomass (AGB)  Degraded grassland  Machine learning  Northern agro-pastoral ecotone  Terrestrial laser scanning (TLS)  
Application of deep learning in ecological resource research: Theories, methods, and challenges 期刊论文
SCIENCE CHINA-EARTH SCIENCES, 2020, 卷号: 63, 期号: 10, 页码: 1457-1474
Authors:  Guo, Qinghua;  Jin, Shichao;  Li, Min;  Yang, Qiuli;  Xu, Kexin;  Ju, Yuanzhen;  Zhang, Jing;  Xuan, Jing;  Liu, Jin;  Su, Yanjun;  Xu, Qiang;  Liu, Yu
Adobe PDF(4690Kb)  |  Favorite  |  View/Download:2/0  |  Submit date:2022/01/06
Ecological resources  Deep learning  Neural network  Big data  Theory and tools  Application and challenge  
Stem-Leaf Segmentation and Phenotypic Trait Extraction of Individual Maize Using Terrestrial LiDAR Data 期刊论文
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 卷号: 57, 期号: 3, 页码: 1336-1346
Authors:  Jin, Shichao;  Su, Yanjun;  Wu, Fangfang;  Pang, Shuxin;  Gao, Shang;  Hu, Tianyu;  Liu, Jin;  Guo, Qinghua
Adobe PDF(7737Kb)  |  Favorite  |  View/Download:2/0  |  Submit date:2022/01/06
Light detection and ranging (LiDAR)  phenotypic traits  regional growth  segmentation  skeleton  
The Influence of Vegetation Characteristics on Individual Tree Segmentation Methods with Airborne LiDAR Data 期刊论文
REMOTE SENSING, 2019, 卷号: 11, 期号: 23
Authors:  Yang, Qiuli;  Su, Yanjun;  Jin, Shichao;  Kelly, Maggi;  Hu, Tianyu;  Ma, Qin;  Li, Yumei;  Song, Shilin;  Zhang, Jing;  Xu, Guangcai;  Wei, Jianxin;  Guo, Qinghua
Adobe PDF(6208Kb)  |  Favorite  |  View/Download:0/0  |  Submit date:2022/01/06
individual segmentation method  leaf area index  canopy cover  tree density  coefficient of variation of tree height  
Evaluating maize phenotype dynamics under drought stress using terrestrial lidar 期刊论文
PLANT METHODS, 2019, 卷号: 15
Authors:  Su, Yanjun;  Wu, Fangfang;  Ao, Zurui;  Jin, Shichao;  Qin, Feng;  Liu, Boxin;  Pang, Shuxin;  Liu, Lingli;  Guo, Qinghua
Adobe PDF(2545Kb)  |  Favorite  |  View/Download:1/0  |  Submit date:2022/01/06
Maize  Phenotype  Lidar  Drought stress