IB-CAS

Browse/Search Results:  1-7 of 7 Help

Selected(0)Clear Items/Page:    Sort:
Separating the Structural Components of Maize for Field Phenotyping Using Terrestrial LiDAR Data and Deep Convolutional Neural Networks 期刊论文
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 卷号: 58, 期号: 4, 页码: 2644-2658
Authors:  Jin, Shichao;  Su, Yanjun;  Gao, Shang;  Wu, Fangfang;  Ma, Qin;  Xu, Kexin;  Hu, Tianyu;  Liu, Jin;  Pang, Shuxin;  Guan, Hongcan;  Zhang, Jing;  Guo, Qinghua
Adobe PDF(14928Kb)  |  Favorite  |  View/Download:7/0  |  Submit date:2022/03/01
Classification  deep learning  LiDAR  phenotype  segmentation  structural components  
Accuracy assessment and error analysis for diameter at breast height measurement of trees obtained using a novel backpack LiDAR system 期刊论文
FOREST ECOSYSTEMS, 2020, 卷号: 7, 期号: 1
Authors:  Xie, Yuyang;  Zhang, Jie;  Chen, Xiangwu;  Pang, Shuxin;  Zeng, Hui;  Shen, Zehao
Adobe PDF(1254Kb)  |  Favorite  |  View/Download:5/0  |  Submit date:2022/03/01
Adaptive cylinder fitting  Diameter at breast height  LiBackpack  Point cloud slice  Point density  Transitional model  
Non-destructive estimation of field maize biomass using terrestrial lidar: an evaluation from plot level to individual leaf level 期刊论文
PLANT METHODS, 2020, 卷号: 16, 期号: 1
Authors:  Jin, Shichao;  Su, Yanjun;  Song, Shilin;  Xu, Kexin;  Hu, Tianyu;  Yang, Qiuli;  Wu, Fangfang;  Xu, Guangcai;  Ma, Qin;  Guan, Hongcan;  Pang, Shuxin;  Li, Yumei;  Guo, Qinghua
Adobe PDF(4774Kb)  |  Favorite  |  View/Download:6/0  |  Submit date:2022/03/01
Biomass  Phenotype  Machine learning  Terrestrial lidar  Precision agriculture  
Evaluating maize phenotype dynamics under drought stress using terrestrial lidar 期刊论文
PLANT METHODS, 2019, 卷号: 15
Authors:  Su, Yanjun;  Wu, Fangfang;  Ao, Zurui;  Jin, Shichao;  Qin, Feng;  Liu, Boxin;  Pang, Shuxin;  Liu, Lingli;  Guo, Qinghua
Adobe PDF(2545Kb)  |  Favorite  |  View/Download:9/0  |  Submit date:2022/01/06
Maize  Phenotype  Lidar  Drought stress  
Stem-Leaf Segmentation and Phenotypic Trait Extraction of Individual Maize Using Terrestrial LiDAR Data 期刊论文
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 卷号: 57, 期号: 3, 页码: 1336-1346
Authors:  Jin, Shichao;  Su, Yanjun;  Wu, Fangfang;  Pang, Shuxin;  Gao, Shang;  Hu, Tianyu;  Liu, Jin;  Guo, Qinghua
Adobe PDF(7737Kb)  |  Favorite  |  View/Download:10/0  |  Submit date:2022/01/06
Light detection and ranging (LiDAR)  phenotypic traits  regional growth  segmentation  skeleton  
Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping 期刊论文
SCIENCE CHINA-LIFE SCIENCES, 2018, 卷号: 61, 期号: 3, 页码: 328-339
Authors:  Guo, Qinghua;  Wu, Fangfang;  Pang, Shuxin;  Zhao, Xiaoqian;  Chen, Linhai;  Liu, Jin;  Xue, Baolin;  Xu, Guangcai;  Li, Le;  Jing, Haichun;  Chu, Chengcai
Adobe PDF(5850Kb)  |  Favorite  |  View/Download:6/0  |  Submit date:2022/02/25
crop breeding  phenotypic traits  data fusion  LiDAR  high-throughput  integrated platform  
Deep Learning: Individual Maize Segmentation From Terrestrial Lidar Data Using Faster R-CNN and Regional Growth Algorithms 期刊论文
FRONTIERS IN PLANT SCIENCE, 2018, 卷号: 9
Authors:  Jin, Shichao;  Su, Yanjun;  Gao, Shang;  Wu, Fangfang;  Hu, Tianyu;  Liu, Jin;  Li, Wankai;  Wang, Dingchang;  Chen, Shaojiang;  Jiang, Yuanxi;  Pang, Shuxin;  Guo, Qinghua
Adobe PDF(2278Kb)  |  Favorite  |  View/Download:5/0  |  Submit date:2022/02/25
deep learning  detection  classification  segmentation  phenotype  Lidar (light detection and ranging)